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curve y ids f (5) at the point x0. 

For k = V8 the characteristic exponents h,and X2 of the linearized system of perturbed- 
motion equations are related to the third order resonance relationship h, = 3x,. Calculations 
show that if f" jzOf#O here f then the periodic motion under investigation is unstable. 

For the remaining values of k in the interval (o,E/g) the solution of the stability 
question depends on the parameters 

nor k f =I, (there is no fourth-order resonance hl = 4&)* 
periodic salt&ions under consideration hold in the general case 
normal form, 

orbital stability of the 
of non-degeneracy of the 

In particular, calculations perfoxmed for the parabola (x* =x2 = 0) and the sinusoid 
(Xl = 0, X& = -1) show that the solutions (2.4) are stable for these curves for all. values 
k in the interval (O,V,). 
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SOME CONDITIONS FOR THE EXISTENCE AND STABILITY OF PERIODIC OSCILLATIONS 
IN NON~L~N~~ NOB-AUTONOMOUS H~~~~LT~N~AN SYSTEMS* 

A.A. ZEVIN 

The sufficient conditions for the existence and uniqueness of periodic 
solutions are obtained for non-autonomous Hamiltonian systems by the 
method of continuation with respect to the parameter /l/ (similar results 
were established for certain vector equations by other methods in /2, 3./I. 
Using the theorem on the directed width of stability regions /4J, stabili%y 
criteria to a first approximation of these solutions are obtained. The 
effect of small dissipative forces on stability is investigated. Systems 
axe considered in which some of the general.ized coordinates are angular. 
The conditions for the existence, uniqueness, and stability are obtained, 
ds well as the upper bounds of solutions that correspond to periodic 
rotational motions of the angular coordinates with any preassigned average 
velocities that axe multiples of the perturbing effect. The periodic 
oscillatory and rotational motions of two coupled pendulums are considered, 
as an example. 

1. We consider the system 

(1.1) 

where xx1 . , ., z,, are the generalized coordinates, s+,+~, . . ..s. are the momenta, anb the 

Hamiltonian function H(zl,...,sz,, wt) is doubly differentiable with respect to tg and &G- 
periodic in ot. 

*Prikl.Matem.Mekhan.,48,4,63?-646‘1984 
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The variational equation 

Jy’ = A (x (C), ot) y (1.3) 

A (Xv Wt) = 11 C!ih_ (X, at) II I 
d=H 

‘ik = q 

where 1, is a unit matrix of order n, corresponds to the solution x (t) of system (1.1). 
Suppose that the matrix A (x, cot) is of fixed sign for all x, t and its elements are 

bounded in Ren+l. Then we can find constant matrices A-and A+of fixed sign, of the same 

sign as A (x, ot), and such that A_ <A (x, &)<A+, i.e. for any vector of order and any 
the respective quadratic forms satisfy the inequality 

(e, A-e) < (e, A(x, ~0 c) < (c, A+e) (1.3) 

The eiqenvalues of the matrices J-IA_ and J-‘A, are imaginary by virtue of the fact 
thatA_and A+ are of fixed sign; we denote them by *iok- and fiwk+, respectively, where 

(k = 1, . . ., n)_ 
Theorem 1. If 

o@G+[O~-,C++J, i-1 ,..., n; m=l,2,... (1.4) 

system (1.1) has a uniqueperiodic solution with period T = 2x/o. 
This solution is stable to a first approximation, when the condition 

o~~[~i-+~y-,~,+f~t’], i,k=l,...,w; m= ,_,... I’) 11.5) 

is satisfied. 

Proof. We Set H = ff (x, cd, E) = (x, A-x) f e [U (CC, ot) - (x, A-x)1 in (1.1) r We will show 
that when es [O, 11 the following conditions are satisfied. All solutions x(t, e) are contin- 

uable in (0, =) and any periodic solution of period T has the estimate (X (0, a), X (0, E)) < iv 
which is independent of e; the respective equation (1.2) has no periodic solutions of period 

T, and when e = 0 it has a periodic solution of period T. As shown in /l/, the given system 

(corresponding to .e = 1) under these conditions has a periodic solution of period T. 
Let us represent (1.1) in the form 

Jx’ = H, (x, ot, e) = s Hxo (e 

1 

x, cot; E) d@ + H, (Ox, ot, E) IeM = i H,, (Ox, ot, e) x d0 + eH, (0, wt) 
0 0 

Thus any solution x (t,E) of system (1.1) also satisfies the equation 

Jx’ = A, (t, e) x + ef (t) 

A, (t, e) = i .4 (0x (t, e), d, e) d0, f(tj=f(t+ T)=H=(O,ot) 
0 

(1.6) 

and since A_ < A (x, ot, e) < A (x, 4 < A,, we have A_ < A, (t, e) < A, when etz [O, 11. 
We set 'p (t, e) = (x (t, e), x (t, 8)). By virtue of (1.6) 

'p I= 2(x,x')= 2 (xJ-lA,x + eJ-If) 

hence, using the Cauchy inequality, we obtain 

9' < 2 (h+cp + crp'/s), c = max (C (t), f (t))“’ 

where A+ is the largest eigenvalue 

inequali -ties, we obtain 
of matrix A,. Using Chaplygin's theorem on differential 

cp (t, e) < &[(h,@(O. e) + c)exp(h+t) - c]” for t>o (1.7) 

It follows from (1.7) that the solution x (t,e) is continuable in (0, ce). Consider the 

selfconjugate boundary value problem 

JY’ = IQ (4 Y, Y (0) = Y (0 (1.8) 

Let hi, hi-9 hi+ (i = 1, 2, . . .) be the positive eigenvalues of the boundary value problem 
(1.8) arranged in ascending order, when Q =A (X (t, e), wt), Q = A_ and Q = A,, respectively. 

Since the inequality A_ < A (x, at)-< A, holds when EE [O, I], then 7ti' < ki < Ai- /5/. The 
spectra k- and h' are obviously formed from quantities rno/wk- and. M&o,+ (k = 1, . . ., n; 
m = 0, 21, &2, . . _), we have under condition (1.4) hi# 1. Consequently, when E E lo,11 equa- 
tion (1.21, which corresponds to any periodic solution x (t, a), does not have T-periodic solu- 
tions. 

When Q = A, (t,e), the eigenfunctions yh. (t,e) of problem (1.8) form a complete system 
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(by virtue of A, (t, E)> 0) and A,yi and yI: are orthogonal in the interval IO, Tl when i #=k 

/s/. Assuming that yh(t,e) are appropriately normalized, we represent the periodic solution 
of [1.6! in the form 

where hlr (e) are the eigenvalues of problem (1.8), when Q = A, (t, E); h,: (e) > 0 when k > 0 and 
h, (e) < 0 when k < 0. 

Let h_ be the minimum eigenvalue of the matrix A_ ardfr =minfi, I&-- $1, l&k+ - %j)when 
k > 0. Taking into account that A, (t, ef > A_, A% (8) E I&.+? $7 and using i1.9) r we find that 
when E E lo, $1 

where the constant fl,.is independent of E. By virtue of (1.7) and (l.fof cp (a, e) also has 
an upper bound that is independent of E, 

when 8 = 0 system (1.1) has the periodic solution s(t, 0) = 0 of period T. Thus the 
conditions mentioned above for periodic solutions s(t)of period T to exist are satisfied. 

Under the conditions indicated here any periodic solution x (t,&) can be continued in a 
unique way with respect to E in IO, $1 /I./, h ence the number of periodic solutions in the 
same for any EE la,% Since o# wP-int (k = i,._.,n; m = 1,2,...), the solution x (t,O) and 
consequently x (t,If =x (t) are unique. 

We denote the eigenvalues of the matrix .P(A_+s(A,-A_)) by f@(s). Since ok (8) E IOk-, 
ok+] when s E IO, 11, under condition (l.5) we have (wh (s) + oi (s)) Tgt 2nm (i,k = 1,. .., n; m = 
1, 2, . . .). Therefore the equation 

3x' -(A,+s(A,-A_))x 

for any SE IO, 11 is highfy stable, i.e. all muftiplicators lie on a unit circle and are 
definite. In agreement with the theorem on the directed width of stability regions /4/, 
equation (1.2) is also highly stable, i.e. the solution x(f) is stabLe to a first approxima- 
tion. The theorem is proved. 

2. Consider the systems defined by the Lagrange equation 

where K (x, x’, ol) and V (x, cot) are the kinetic and potential energy. 
The variational equatlion 

IM (t) z' -!- Q (t) rl’ - Q’ (t) i + [U (t) - P @)I z - 0 (2.2) 

corresponds to the solution 2 f@ * Here the prime denotes transposition, and the elements 
of the matrices M,Q, P and Uare equal to the derivatives calculated for x = x @). 

SK 
mix --Tyy* 

q{i,-qL 
dr,dr, 

Pik 
PK 

=i-zx-’ 
I k 

uik = ““$s 
Equation (2.2). reduces to the form (1.21, and fram /4/ 

i.e. the vector y is equal to the sum of vectors r and Mr.+ Qz. 
If the kinetic energy is independent of the coordinates (R = x(x", al)), then P--Q-O, 

and inequality (1.31 will be satisfied, if A-and A, axe taken as quasidiagonal matrices with 
elements u_, M+-" and V,, M_-'> where O< U_,< U< U,, O<M_<M,<M+. As a result, under 

conditions (I.41 and ff.51, 6s; and oi' are equal to the square roots of the eiganvalues of 
the matrices M+-lU_ and JV_-~U~ respectively. Note that the conditions of existence and 

uniqueness have been obtained for this case by other methods /2, 3/. 
Usually K = 'i2 (x', M (x, ot)x’) and the matrix M(x, wt) is positive definite for allxand 
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t. Moreover, the matrix U in many cases (e.g., in systems with angular coordinates with in- 
tensive parametric excitation, etc.) is not positive definite, and the condition A > 0 is 
not satisfied. In the following theorem a weaker condition of positive definiteness in the 
mean is imposed on the matrix U, i.e. 

Let K = Ve (x', N (ot) x'), 0 < M_ < M (cot) and u (x, ot) < U,, ,*+n be the maximum 

eigenvalue of the matrix &f_-'U,. 

Theorem 2. The periodic solution of period T of (2.11, when 6.i > 20,' under condition 
(2.4) is stable to a first approximation. 

Proof. Since K is independent of x, hence Q = P = 0. Consider the equation 

Jy’ = 9e.A (t) y, A@)= 0 I u (x (0, ot) 0 
M-1 (Glt) I (2.5) 

Suppose pi(&) and yt (t,h) are multipliers and their respective solutions of (2.51, 
(yt (t f i”,k)= pIyl @,A)). Taking into account that yi = 21 f Mz;, we obtain 

qi = 1 (Ay,, yl) dt I + f (Jy,‘, yi) dt =: + 5 (Mz,‘, z;) dt - + (Mz,‘, zi) 7 
0 0 P 0 

In view of (2.4) we have (A)> 0, hence for small h all multipliers of the first kind 
are displaced from the point p(O)= 1 on the upper semicircle, and of the second kind on the 
lower semicircle /5/. Since the term 1 pi ( = 1 outside the integral (2.6) is zero, qi > 0 
and, consequently, as h Pi (A) increases the multipliers continue to move in the same direc- 
tion /4/. Let&be the the value of 1 for which the leading multipliers of various kinds meet 
at the point p= -1. Obviously h, is the first eigenvalue of the boundary value problem for 
(2.5) with conditions y (0) = -y (T). Since A (t)< A, = diag (U,, &f_-'), then h-, > h,+ = SE' 

(To,,+)-" > 1 when o > Zo,', where h,' is the first positive eigenvalue of the boundary value 
problem indicated when A = A+. Consequently, when h = 1, all multipliers of the first kind 
lie on the upper semicircle and of the second kind on the lower semicircle. This proves the 
stability of solution x(t). 

Remark. If M is a constant matrix V(x,ol)= V(-x,~tfn), solutions of the form x (t) = 
-x(t+ T/Z) are usually considered (this relation is clearly valid, when the periodic solution 
of period T is unique, since besides x(i) (2.1) is satisfied by the function -x(t-l- T/Z)). Then 
Uik (x, ot) = ~ik (--x, 01 + x), U(t) = U(t + T/Z), A (t) = A (t-l- T/2), therefore 20 must be substituted for 
0 in the conditions of stability obtained above. In particular Theorem 2 holds when o>o,+. 

3. Suppose the function V(x, ot) is periodic of period 2n with respect to, x,, . .( I1 
fL < n), and K = ‘i, (x’, M (ot) x’), M (at) = M (-mot), V (x, ot) = V (-x, --cot). Let us investigate 

the solution x(t) of the following form: 

Xi (t) = niot + q1 (t), Xi (0) = 0, i = 2, . . ., n (3.1) 

where ni = 0 when i> 1, ni is any integer when i.< 1, and $i(t) = +i(t f T) is the oscil- 
lating component of the solution. When ni=O, a periodic oscillation corresponds to the 
respective coordinate Xi, and when tti 50 0, a rotary motion with an average angular velocity 
ni6) corresponds to it. Since the function Y (t) = -x(--t) also satisfies (2.1) and v (0) = 

x (0). v' (0) = x' (O), we have x (t) = -x (A). 
Note that solutions of the form (3.1) are typical for systems containing angular coord- 

inates_ 
Theorem 3. When 6J > %I+ and any given ni (2.1) has a unique solution of the form (3.1). 

Proof. We set M (cot, E) = M_ f e [M (at) - M-1, V (x, at, E) = EV (x, cot). Let x (t, E) be the 
solution of the boundary value problem for (2.1) with conditions Xi (0) = 0, zi (T/Z) = nni, i = 
1 _ ., n. 
x’(l). 

Obviously, the solution x (t, e) continued in t is of the form (3.1), x (t, 1) = 
The respective boundary value problem for the variational equation has the form 

!,w (I&, E) Z’i’ + hU(X (t, E), Wt, E) Z = 0, Z (0) = Z (T/2) = 0 (3.2) 

Since iw(ot, E)> M_. lJ (x (t. e), wt, 8) .< u+ when e= [O, 11, the first positive eigenvalue 

of problem (3.2) is h, >A,+ =4n*(Tw,,+)-?> 1 when o > o,,+, where hl'is the eigenvalue when 
M = M_,* u = u,. Hence when h = 1 and any E E [O,lI, problem (3.2) has no non-trivial 
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solutions. 
Consequently, if a solution of the form (3.1) exists for some E* E lo, 11, it can be 

continued in a unique way with respect to e in some neighbourhood of E* /7/. Hence the con- 
ditions indicated above /l/ that ensure the uniqueness of the continuation of the periodic 
solution x(t,&) with respect to e on [O, 11 and, by the same token, that of the existence and 
uniqueness of x(t,1) =x(t), are also sufficient for soLutions of the form (3.1). 

Representing (2.1) in Hamiltonian form and setting 

q (t. E) = (9 (2, E) i M (ot, E) $J* (t, e), 9 (t, e) i M (at, e)-(P’ (b e)) 

we obtain, like the proof of Theorem 1, that in the case considered here, when e E IO, II, the 
estimates (1.7), (1.10) hold, and thus any solution x(t,e) is continuable on (0, w), and for 
solutions (3.1) the estimate (m(O,e), cp(O,e))< N holds. When s=O, (2.1) has obviously 
a unique solution .zi (t,O) = niot (i< I),zj (t, 0) = 0 (i> 1) of the form (3.1). The conditions 
that ensure the existence and uniqueness of solution x(t, 1)= x(1) are thus satisfied. 

Remark. Since the function V(x,or) is periodic of period 2s with respect to 21, ., 21 
and V(x, et) = V (-x. --ot), then V(x + x0, IO:)= V(-_(x + x,), -cd) where lie = 0, where i>l,and Zi,=O 
or Zio=s when id-l. Hence, when o>e,,+, a unique periodic solution of form zi (t) = *i. + niet + 
$i (t) exists. Thus for given mean velocitiies of rotation njo (i= 1,...,l), 2' solutions of (2.1) 
exist which correspond to various xg. 

Note that this theorem does not exclude other types of solution of frequency e>%l+. 
In view of the periodicity of V(x, ot) with respect to Xl, . . .1 51, the matrix U (x, ot) 

is not positive definite. Theorem 2 may be used to investigate solutions of this type. 
We shall show that for fairly large o, solution (3.1) exists, even if the elements 

(x, ot) of the matrix U are unbounded when XE R". To do this, we will first determine the 
upper bounds of the solutions, which are also of independent interest. 

Let the matrix M(ot) be reduced to diagonal form, i.e. M(d)= diag [m, (at), . . ..m.,(ot)l, 

and 0 < mi-< rnt (at),< mi+. For given niwe write system (2.1) in the form 

[ml (*pi' + n*m)l’ + ff ($1, . . .., $=, t) = 0, i = 1, . . ., n (3.3) 

Let us assume that for certain constants cik > 0, pi>0 and a>%&+ the following 
inequalities hold: 

IfiWl?..., ~~~t)I<k~~CikI~kI+PiIsin~I, i=l,...,n (3.4) 

Let ~,~be the largest real eigenvalue of the matrix M_“C (M_ = diag (m,-, . ...%-), and 

c = 11 cik II)* $t’ (t) = Ai+ sin ot be the solution of the system 

mi-vi” + i cikqk + pi sin ot = 0, i=l,...,n 
k=l 

(3.5) 

Theorem 4. The estimate 

I$[(t) I<Ar+sinot on (O,do), i= 1,. . .,n (3.6) 

holds when o> me. 

Proof. We set cjk (e) = ecfk in (3.5) . Since 0, (s) = em*, then with ef IO,11 the solu- 
tion $i+ (1, e) = Ai+ (e) sin ot exists. We shall show that Al+(e)> 0. When e = 0 this inequality 
is satisfied. Let AR+ (e*) = 0, Ai+ (e.J > 0 for some e, E IO, 11, but then qkpk+“’ (t, e*) s 0 which 
is impossible, sincebyvirtue of the k-th equationof (3.5),wehave mr-$,+.., (t,e,)< 0 on (o,~/~). 

Let $~((t, e)(q (0, e)=g(n/o, e) = 0,e E IO, 11) be the solution of the system 

Imi (ot, s) ($i' + nio)l’ + e/i (h . . ., %, t) = 0, i = 1,...,n (3.7) 

where rni(&, e) = mi-+ s(mi(ot)- m;). When e = 0, the validity of the estimates is evident. 
If they are not satisfied when e = 1, then k, t, E LO, n/o1 and e, E (0, 11 can be found such 

that I $k (4, e*) I = Qk+ (a* I a.’ (bt e*) I = I %+’ (h! I, I -+i (t, e,) I <*i+ (t) (i = 1, . . ., n; t E IO, dol). 
Since 

comparison of the k-th equation of (3.5) with (3.7) shows that 1 @k (tq e*) 1 < qk+ @) On toy 

n/dv I $k’ (0, %)i<$k+’ (oh 1 $k’ ( / ) XO,E~ I<-I#~+‘(~/~I). This contradiction proves the theorem. 
We separate the region OCR" in the neighbourhood $ = 0. Let the inequalities (3.4) 

and U(x(t), ot)< U, be satisfied when q E 9. Since At+(u)4 0 as co+ m, we have q'(t)E 
Q for fairly large o; consequently also $((t, e)E Q when eE [O, 11. Hence under the conditions 
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0 > O* (Q),o > o,'(&)theunique solution considered here exists in the region Q. 

4. Let us investigate the effect of small dissipative forces on the stabilityofperiodi: 
oscillations. Consider the equation 

where F (cot) = F (ot + 2x) is a n x n matrix that is symmetric and positive definite, and !L 
is a small positive parameter. 

When assume that when F=o, (4.1) has the peridic solution r(I) of period T, and the 
respective variational equation (2.2) is highly stable (this occurs when any of the stability 
conditions derived above is satisfied). Then (2.2) has no periodic solutions that are of 
period T, since an indefinite multiplier IJ = 1 would correspond to them. Hence by Poincare's 
theorem /8/, (4.1) has, for small p, the unique solution x (t, 11) such that s (t, I!) = x (r). The 
respective variational equation has the form 

IA1 (ot) z'l' -; FF (ot) z’ + U (x (t, II)% ot) z = 0 (i.‘) 

Let cLi@ = ioio be an ri-,multiple characteristic exponent of (2.2). The characteristic 
exponents of (4.21, which become oil) when p = 0, may be represented 

a. h (IA)= cz,o + U$ (!A, I / + Uliii (p), k=l,...,r, 

where ali' (n) are determined by the perturbation of the solution x (0 

the coefficients of (2.2) and aZik(k) by the presence of the term @s'. 
factors doesnotdisturb the Hamiltonian character of the system, hence 

are imaginary. Let us obtain expressions for c+~"(@). 

in the form 

and, consequently of 

The first of these 
the quantities al,;: (it) 

The solutions 

correspond to the characteristic exponent alQ . 
We set yi,; = Zif< + Mzi, ' = exp (a&) v(~ (t) and normalize the functions vii = llin '- Jl (Uii .- 

ai&k) by the condition 

where 6,, = 0 when p + q, 6,, = 1. We have yi = 1 for the multiplier of the first kind 

Yi = -1 for those of the second kind. 
Since simple elementary divisors correspond to a definite multiplier, the expansion 

ati" in powers of p has the form 
-1 

azik(@= &I f O(p'+*ifi) 

(4.3) 

and 

of 

where under condition (4.3) the quantities pik are eigenvalues ofthematrix CI with elements 

%q = ((Bvipv YiiJviq)), B = diag (0, --FM-') 

and the quantities git are multiples of the respective values of ptk. 
Taking into account that 1 exp(q,,T) 1 = 1, F' = P, we obtain 

OPP = -f(Fzip‘~ Yiiztq)) = ((Yiizipa.~ FZiq)) = -_((Yiizfp* Fzig’)) = % 

i.e. o is a Hermitian matrix and its eigenvalues are therefore real. If pik are negative for 
all i, the solution x(t, p),. when p is small, is asymptotically stable; however, if some plh- 
is positive, then x(t, p) is unstable. 

In the case of a second-order scalar equation, the solution is stable to a first approx- 
imation, and becomes asymptotically stable, when subjected to small dissipative forces /91. 
We shall explain under what conditions a similar statement holds for the vector equation (4.1). 

Suppose that F = M (which physically means that the coefficients of dissipation are 
proportional to the inertial coefficients). Then 

a pq = -((MZip’t Yiiziq)) = -I/* ((yip, YriJviq)) = -‘~&pq 

Thus here all @tk = -1/1 and, consequently, for small p the solution x(t, p) is asymptot- 
ically stable. 

Let us assume that all the characteristic exponents ag, are simple, M and Fare constant 
matrices, and matrix u(t) is nearly constant (the latter occurs, for instance, in the case of 
forced oscillations of weakly non-linear systems). Since the functions ut(t) are also close 
to constants, when F > 0, J’iOi, = I 01~ 1, hence 
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Pi = Ott = -_(tF (4’ + i6Jtoui)v YiiUi)) z -I @to I (CFui, 4)) < O 

Thus, also, in this case x(t, p) is asymptotically stable when p is small. 

5. As an example, let us consider the periodic oscillatory and rotary motions of a 
system of two connected pendulums (Fig.1). Let the potential energy of the system be v, = 

'/*CPZ, where P= 12RsinV,(z,+ +*)I is the distance between the mounting points of the two 
pendulums, and zl,zz are the angular coordinates of the pendulums. The equations of forced 
oscillations of the system are 

where ware the masses and li the lengths of pendulums, and CJ is 
the acceleration due to gravity. 

The variational equation of the system motion is 

Fig.4 

Ma" + U (t) z = 0 (5.2) 
M = diag (&. L,), (I (t) = II US (1) II 
I+ = u; = k cos (11 (t)++ (i)), uii= ki cos pi (1) + k cos (~1 (t) i ~2 (t)) 

Obviously U(t)< U,, where V, is a matrix with elements u,i+ = 
ki + k, UI~+ = USI+ = k. Hence we can take as Oi+' the eigenvalues of 
the matrix M-V+, i.e. the roots of the equation 

A (0) = (k, + k - L,o*) (k, + k - L,o”) - W = 0 

LiZi'. + ki sin pi -I- k sin (zl-l- za) + Fi sin OL = 0, i = 1, 2 
Li = mili’, ki = m,gli, k = CR* 

(5.1) 

Note that the quantities O+i are equal to the frequencies of small natural oscillations 
of the system. 

In conformity with the remark to Theorem 3 (5.1), when o>o,+ there is a unique periodic 
solution of the form 

*i (0 = lie + niat + Cpi (03 $i (t) = -Vi (-0 = $i (t + T) 

where (ni are any given integers and zio= 0 or zio= n). When n, = ?I, = 0, the motion of the 
system is oscillatory and, when +io=O, the oscillations of the respective pendulum occur 
realtive to the lower equilibrium position and when Q=IC they occur relative to the upper 
equilibrium position. The over-all number of oscillating motions of this type is four. 

First, we shall investigate the periodic oscillations of the system in the neighbourhood 
of the equilibrium position (al= n2=z1"= zpg= 0). The inequalities (3.4) will obviously be 
satisfied, if we set C = U+,p,= IFi I. Hence when o> op+, we have 

1 t, (t) 1 <A,+ sin wt on (0, II/U) (5.3) 

Al+ = PI (Ld - ke - k) + p2k 
A (01) 

, /I*+ = 
PI (Ld - kl - k) 1 p,k 

A (4 

Since the function --x (t-t- T/21 also satisfies (5.1) and conditions (3.1), by virtue of the 
uniqueness, x (t) = - x (1 + T/2). In conformity withthe,remark to Theorem 2, the solution x (t) 
is stable when (CJ)>O and o>o,+. In this system 

(c, U (1) c) = k, ~0s ~1 (t) cl* + k, cm 12 (t) cz2 i- k cm (q (t) + I* (t))X.& + C# 

Hence U(t)> c'-, (U)>(V), when A,*+ A,+fn, where U-(t) is a matrix obtained from U(t) 
by replacing rl(t) by their upper bounds (5.3). The conditions of positive definiteness cV-, 
have the form 

kl!e (AI+) + kJo (AI+ + AZ+) > 0 (5.4) 
klkJo(Al+) J~(Az+)-tkJo VI++&+) [boo + Wo(4+)1>0 

J,(A)=+ ~~es(Asjnr)dt 
Cl 

where I,(A) is a Bessel function of the first kind. 
Thus when A,+ + A,+ Q n, under conditions (5.4) the solution x(i) is stable to a first 

approximation. Using (5.3) it is possible to determine o,at which these inequalities begin 
to be satisfied. 

The estimates (5.3) and consequently, the conditions of stability (5.4) obviously hold 
for any perturbing forces F+(t) Of the form 

F, (t) = -F, (-t) = -Fi (t + T/2), 1 Fi (t) 1 < pi 1 sin it 1 

Let us now investigate the solution of the form (3.1), when nl= --i,n,= 1 that defines 
the rotation of pendulums in one and the same direction at the average angular velocity O. 
Let us assume that 

S1 = F, - m,& > 0, R, = F,+ m,& <0 
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and, first, consider the disconnected pendulums (c = 0). 
Since sin(q, - et) = -sin of + B (t)ql, where -I < 6 (t) < I, setting cl1 = m,gll and using Theorem 

4, we obtain Iql (t) 1 < R,[L,d - k,]-lsin et on (0, x/o) when w2> g/l,. We shall show that &(f)>O or. 
(0, X/O). We set 0 (t, e) = ~0 (t); when E= 0 the inequality indicated is satisfied and li‘l (0, '> li, 
$1' (n/o) < 0. If it is violated when E increases on (0. 41, then *I (tl, E.) = ql' (tl, 8.) = 0, $, (1, t..) _> (i 
on (0, n/o] for some t, E [O, n/o] and 8,~ (0, I]. But by virtue of the respective equation we have 
vl(t,e,)<O in the neighbourhood of fl. This contradiction proves that +I(t)>O on (0, x/w). 

If tl(t)< x/2 on (O,n/o), then taking ql(t)> 0 into account, we have 

1 q (t) I q I z1 (do - t) 1, cos =I (t) > I cos =I (do - t) ( 
Consequently the mean value of ~091~ (t) on (0, n/o) is positive. Thus in conformity with 

Theorem 2 and motion considered here is stable, if 

The rotationmay then be very irregular, it is even possible that zl'(0)>O, i.e. in some 

interval the pendulum rotation is reversed (note that the usual tests of rotation stability 

of the pendulum are inapplicable to such modes /ll, 12/). The motion of the second pendulum 
is obviously stable, when 

Now let c#O. To obtain the upper bounds of Iqi(t)( it is obviously necessary to replace 
pi by ) RiI in (5.3). Let us assume that beginning with some 0, > 2o,+ the inequalities 

AIf< n/2, A,+ X< n/2, Rl>cR*A,+, R,<-cRbllC 
are satisfied. 

We shall show that the respective solutionisstable. By virtue of the first of equations 

(5.1), the inequality ql(t)>O is not violated on (0,nlo) for some c.<c, since 

R, sin ot _t c,Rp sin (h f 9,) > (RI - c*RSA,+) sin ot>O on (0. n/o) 

From the second of equations (5.1) we similarly find that q%(t)<0 on (0,nlo). As the 

result, the mean value of coszl (f), cosz) (t). cos(zI (:)-I- z%(t)) and, consequently, that of the matrix 

O(t) on [O,do] is positive, which, using Theorem 2, proves the stability of the solution 

considered. 
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