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curve y = f(z) at the point z,.

For k = %y the characteristic exponents A, and A, of the linearized system of perturbed-
motion equations are related to the third order resonance relationship A; = 34;. Calculations

show that if iz == here, then the pericdic motion under investigation is unstable
snow that 7 % F U DeYe, then The perifaic motidn under investigation is .

For the remaining values of k in the interval (0,%,) the solution of the stability
gquestion depends on the parameters

(@) 1LY (a0
MTFEE T TP

For ks= Y, (there is no fourth-order resonance A, = 4A;}), orbital stability of the
pericdic solutions under consideration heold in the general case of non-degeneracy of the
normal form.

In particular, caloulations performed for the parabola (%; = %y == {) and the sinusoid

(%1 = 0, %, = —1) show that the solutions (2.4) are stable for these curves for all values of
k in the interval (0, Y,).
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SOME CONDITIONS FOR THE EXISTENCE AND STABILITY OF PERIODIC OSCILLATIONS
IN NON-LINEAR NON-AUTONOMOUS HAMILTONIAN SYSTEMS™

A.A, ZEVIN

The sufficient conditions for the existence and unigueness of periodic
solutions are obtained for non~autonomous Hamiltonian systams by the
method of continuation with respect to the parameter /1/ {similar zresults
were established for certain vector eguations by other methods in /2, 3/).
Using the theorem on the directed width of stability regions /4/, stability
criteria to a I.LI'SL appIOlea‘ClOH of these SO.LuthBS are DDY,EU.DEG. The
effect of small dissipative forces on stability is investigated. Systems
are considered in which some of the generalized coordinates are angular.
The conditions for the existence, unigueness, and stability are obtained,
as well as the upper bounds of sclutions that correspond to periodic
rotational motions of the angular coordinates with any preassigned average
velocities that are multiples of the perturbing effect. The periodic
oscillatory and rotational motions of two coupled pendulums are considered,
as an example.

1. We consider the system

2" = s Tupe= ———, i==1, . n {1.1)
2220 azi
where z;, ... %, are the generalized cocrdinates ZTuagy + » 3 Tpy are the momenta, and the
Hamiltonian funetion H ix afy is doubl v Rifferenti&'le with resgpect to z; and pi3
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The variational equation

Jy' = A (x (1), ot) ¥ (1.2

0 -1, a2y

I=l1, o Uk = Fr g
ik

v A o) = ay (x, 00) |,

n

where [, is a unit matrix of order n, corresponds to the solution x (f) of system (1.1).
Suppose that the matrix 4 (x, wf) is of fixed sign for all x,t and its elements are
bounded in R, Then we can find constant matrices A4_and A, of fixed sign, of the same

sign as 4 (x, w¢), and such that A_<{4 (x, of) < 4,, i.e. for any vector of order and any
the respective quadratic forms satisfy the inequality
(e, A_e) < (¢, A(x, wt) ¢) < (¢, 4,¢) (1.3)

The eigenvalues of the matrices J™'4_ and J14, are imaginary by virtue of the fact
that A_and 4, are of fixed sign; we denote them by <iw,~ and =iw,*, respectively, where
k=1,...n).

Theorem 1. If

v

w%%[(ok',m,,“], k=1,...,n;, m=1,2,... (1.4)

system (l.l) has a unique periodic solution with period T = 2a/w.
This solution is stable to a first approximation, when the condition

w@%[mi—+wk'~ﬁ)i++mk+lv Lk=1,...,n;, m=12,... (1.5)
is satisfied.

Proof. We set H = H (x, wt, &) = (x, Ax) ~ ¢ [H (x, o) — (x, 4_x)] in (1.1), We will show
that when &= [0, 1] the following conditions are satisfied. All solutions =z (¢, &) are contin-
uable in ({0, ) and any periodic solution of pericd T has the estimate (x (0,&),x(0,&) <N
which is independent of &; the respective equation (l.2) has no periodic solutions of period
T, and when & =0 it has a periodic solution of period T. As shown in /1/, the given system
(corresponding to & = 1) under these conditions has a periodic solution of period T.

Let us represent (l.l) in the form

1 1

Jx = Hy(x,0t,8) = S Hyg (Bx, wt, ) d0 + H, (0x, ot, e} jomo = S Hyx (0%, 0, 8) x d8 - eH¢ (0, 0f)

] 0

Thus any solution x (¢, &) of system (l.l) also -satisfies the equation

X' = A, (t, e) x + ef () (1.6)
1

A, )= A@x(t,e),0t,0)d0, T =I(+ T)=Hx(0, wt)
0

and since A_ <A (x, o, 8) A (x, 0f) A, we have A_<{ A4, (,e) <4, when = [0, 1].
We set ¢ (t, e) = (x(t,e),x (¢, &)). By virtue of (1.6)

¢ =2(x,x") =2 (xJ 14, x 4 eJIf)
hence, using the Cauchy inequality, we obtain
¢ <29 + co'r), ¢ =max (I (&), [ ()

where A, is the largest eigenvalue of matrix A,. Using Chaplygin's theorem on differential
inequalities, we obtain

9 (t.2) < T [(,97 (0. ) + ) exp (A f) — ] for ¢3>0 (.7

It follows from (1.7) that the solution x (¢, &) is continuable in (0, o). Consider the
selfconjugate boundary value problem

Jy =M@y, y (0 =y(T) (1.8)

Let A, A7, AY (i =1,2,...) be the positive eigenvalues of the boundary value problem
(L.8) arranged in ascending order, when @ = A (x (t,e), wt), Q = A_ and Q = A, , respectively.
Since the inequality 4d_ <4 (x, wt) <{ A, holds when e= [0, 1}, then A <A << A7 /5/. The
spectra A~ and A* are obviously formed from quantities mo/w,” and mo/ot (k=1,..., n;
m =0, +£1, 2, .. .), we have under condition (1.4) A; 3= 1. Consequently, when e e [0, 1] equa-
tion (l.2), which corresponds to any periodic solution x (¢, &), does not have T-periodic solu-
tions.

wWhen @ = A, (¢, €), the eigenfunctions vy, (!, &) of problem (1.8) form a complete system



453

{by virtue of A4, (f,€)>0) and A,y; and y, are orthogonal in the interval [0, T] when is=£k
/5/. Assuming that ¥ {I, &) are appropriately normalized, we represent the periodic solution
of (1.6} in the form

oo T
xo=e 3o HEEES ho={c0nena (1.9)

=00

where A, (8} are the eigenvalues of problem (1.8), when Q = A4, (t, &); A (8)>> 0 when %>>0 and
Ay (8) <O when & <CO.

Let A_be the minimum eigenvalue of the matrix 4_andd=min{{, |4~ — 1} | 4* — 1])vhen
k> 0. Taking into account that A, {, 8} > A_, & (&) e 7, 4] and using (1.9}, we find that
when &&= [0, 1]

T T
\ t e (1.10)
§q>dt<TS(A*x,x 2 v <
T
w3 Z RO =am @D a < 1 S{f,f}dt=N1
A ¢

where the constant N;.is independent of g By virtue of (1.7) and (1.10) ¢ (0,8} also has
an upper bound that is independent of &. .

When & = 0 system (l.l) has the periodic solution z (¢, 0) = 0 of period T. Thus the
conditions mentioned above for periodic solutions z (f) of period T to exist are satisfied.

Under the conditions indicated here any periodic solution X {2, £) can be continued in a
unigue way with respect to € in [0, 1] /1/, hence the number of periocdic sclutions in the
same for any e [0, 1]. Since ez oy /m k=1,...,n m=1,2,...), the solution x(/, 0} and
conseguently x (¢, 1) =x{¢) are unique.

We denote the eigenvalues of the matrix JYA_+s(4,—~4_)) by =kio,(s). Since wy (5) & o,
;'] when se [0, 1], under condition (1.5) we have (wy () + 0; () Tk 2nm (i,k=1,...,n, m=
1,2,...).  ftherefore the equation

Jx' = (4, s {4, — ANx

for any se=10,4] is highly stable, i.e. all multiplicators lie on a unit circle and are
definite. In agreement with the theorem on the directed width of stability regions /4/,
equation (1.2} is also highly stable, i.e. the solution x (f} is stable to a first approxima-
tion. The theorem is proved.

2. Consider the systems defined by the Lagrange egquation

d { 9K 2K —Vy .
-5{—&-;-)-——3?—-—0, i—if‘..,n {2.1}
Kxx, o) =K {&X, o +2n), Vix off =V (x, of + 2n)
where K (x,x', @t} and V (x, ©f) are the kinetic and potential energy.

The variational eguation

Mz +Q@®zl -~ Bz +IUEH~PDlz=0 (2.2)
corresponds to the solution @« {f}. Here the prime denotes transposition, and the elements
of the matrices M, @, P and U are equal to the derivatives calculated for x =x ().

My e b e
i = oz oz,” * QikMW
__&#K _ &y
Py = oz 0z, ' By = E.ria.z:k

Equation (2.2) reduces to the form (1.2), and from /4/

U—P+4+ Q@MY — QM1 . g
A= — Mg M %, y=z b Mz + @z {2.3)
i.e. the vector ¥ is equal to the sum of vectors # and Mz + Q=z.
If the kinetic energy is independent of the coordinates (K = K (x', wt)), then P == =0,
and inequality (1.3) will be satisfied, if A_and A4, are taken as gquasidiagonal matrices with
elements U_, M7 and U, M ™,  where 0 U KUKV, 0< M _MM,., Bs a result, under

conditions (1.4} and {1.5), ®y and ®;* are equal to the square roots of the eigenvalues of
the matrices M *U_ and M U, respectively. Note that the conditions of existence and

uniqueness have been obtained for this case by other methods /2, 3/.
Usually K =Y, (x', M (x, ot) x") and the matrix M (x, wt) is positive definite for all xand
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t. Moreover, the matrix U in many cases (e.g., in systems with angular coordinates with in-
tensive parametric excitation, etc.) is not positive definite, and the condition 4 >»0 is
not satisfied. 1In the following theorem a weaker condition of positive definiteness in the
mean is imposed on the matrix U, i.e.

T
<U>z~%—SU(x(:),mz)dt>o (2.4)
Q
Let K =% (x, M(o)X), O<<M_ < M(at) and Ulx, o) LU, ®"" be the maximum

eigenvalue of the matrix M U,

Theorem 2. The pericdic solution of period T of (2.1), when o > 2e," under condition
(2.4) is stable to a first approximation.

Proof. Since K is independent of x, hence @ == P = (. Consider the equation

=y ag=["®¢® 0 -

Suppose p;{A) and y;{f{, A} are multipliers and their respective solutions of (2.5},
(y: (¢t + T, A) = piy: (1, A)). Taking into account that y; = z; + Mz, we obtain

T T 7 T

. 2 . e 1 .
‘Ia=S(A)'th)dt=—;-S Iy vYa)dt=’TS(Mzi 12) @ — - (M2, 2,) (2.6)
¢ ] ]

o

In view of (2.4) we have (4> >0, hence for small A all multipliers of the first kind
are displaced from the point p (0} =1 on the upper semicircle, and of the second kind on the
lower semicircle /5/. Since the term |p; | =1 outside the integral (2.6) is zero, ¢, >0
and, conseguently, as A p; (A) increases the multipliers continue to move in the same direc-
tion /4/. Let A,be the the value of A for which the leading multipliers of various kinds meet
at the point p= —1. Obviously A, is the first eigenvalue of the boundary value problem for
(2.5) with conditions y{0) = —y(T). Since 4 () < 4, = diag (U,, M), then iy, > 1" = nr?

{(Tw,'Y* > 1 when o > 2w, where A~ is the first positive eigenvalue of the boundary value
problem indicated when 4 = A4,. Conseguently, when A = 1, all multipliers of the first kind
lie on the upper semicircle and of the second kind on the lower semicircle. This proves the
stability of solution x (#).

Remark. If M is a constant matrix V(x, of) = V{-—x, ot+ ), solutions of the form x () =
—x {t+ 7/2) are usually considered (this relation is clearly valid, when the periodic solution
of period T is unique, since besides x(§ (2.1) is satisfied by the function —x({t-+ 7/2)). Then
wip (X, Of) = wjp (—x, @t +n), U{ = U@+ T/2), 4 () =4 (t+ T/2), therefore 20 must be substituted for
@ in the conditions of stability obtained above. In particular Theorem 2 holds when o> w,".

3. Suppose the function V (x, wt) is periodic of period 2n with respect to 1y, ... I
(< n), and K =", (x', M (0t) X}, M (0t) = M (—ot), V(x, of) = V (—x, —ot). Let us investigate

the solution x {f} of the following form:
i =noet+9; ), ;{0 =0,i=1,...,n (3.1)

where n;, =0 when i >, n; is any integer when i<{!{, and P;{8) = ;{¢ + T) is the oscil-
lating component of the solution. When n; =0, a periodic oscillation corresponds to the
respective coordinate z;, and when »n; 5 (0, a rotary motion with an average angular velocity
n;® corresponds to it. Since the function v (f) = —x (—t) also satisfies (2.1) and v (0) =

x (0), v (0) = x" (0), we have x (&) = —x(—1).

Note that solutions of the form (3.1) are typical for systems containing angulaxr coord-~
inates.

Theorem 3. When o > o," and any given =2; (2.1) has a unique solution of the form (3.1).

Proof, We set M (wi, &) = M_ + ¢ [M (0t) — M_], V (x, 0, &) = eV (x, wt). Let x (f, &) be the
solution of the boundary value problem for (2.1) with conditions z; (0) =0, z; (T/2) = nn,, [ =

i, ..., n. Obviously, the solution x(f{, &) continued in t is of the form (3.1), x (1) =
x (f). The respective boundary value problem for the variational equation has the form
M(wt,e)z7 + AUt e),0t,e)z2=0, 2(0)=2(T/2) =0 (3.2)

Since M {(wt, &) > M_, Ulix (i ¢€), of, &) < U, when ee=[0,1], the first positive eigenvalue

of problem (3.2) is Ay 2 A* =412 (Ta,*)? > 1 when o > ®,", where A’ is the eigenvalue when
M=M_,U=U, Hence when A =1 and any e¢&[0,1], problem (3.2) has no non-trivial
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solutions.

Consequently, if a solution of the form (3.1l) exists for some g, &< [0, 1], it can be
continued in a unique way with respect to £ in some neighbourhood of &, /7/. Hence the con-
ditions indicated above /l1/ that ensure the uniqueness of the continuation of the periodic
solution x(t,€) with respect to & on [0,1] and, by the same token, that of the existence and
uniqueness of x (¢, 1) = x (¢), are also sufficient for solutions of the form (3.1).

Representing (2.1) in Hamiltonian form and setting

@ (te) = (bt e) + M(at, &) ¥ (t e), b (Le) -+ Mot e) ¥ (¢t ¢)

we obtain, like the proof of Theorem 1, that in the case considered here, when & & [0, 1}, the
estimates (1.7), (1.10) hold, and thus any solution x (t, £) is continuable on (0, ), and for
solutions (3.1) the estimate (¢ (0,¢), ¢ (0, &) <N holds. When & =0, (2.1) has obviously

a unique solution z;(t,0) = n;ot (i <<1),z; (¢, 00 =0 (i >1) of the form (3.1). The conditions
that ensure the existence and uniqueness of solution x (¢, 1) = x (f) are thus satisfied.

Remark. Since the function V(x, o) is periodic of period 2n with respect to =z,...z
and V(x, ¢t) = V (—x, —ot), then V(x+ x, of) =V (—(x 4 Xy, —0t) where zi,=0, where i>1l, and z,=0
or zijp,=n when i< .. Hence, when o> w,*, a unique periodic solution of form =z; () = zj0+ ni0t +
Vi (1) exists. Thus for given mean velocities of rotation ne(i=1,...1)), 2¢ solutions of (2.1)
exist which correspond to various x,.

Note that this theorem does not exclude other types of solution of frequency > og*.

In view of the periodicity of V (x, 0t) with respect to 2, ..., Z;, the matrix U (x, o)
is not positive definite. Theorem 2 may be used to investigate solutions of this type.

We shall show that for fairly large @, solution (3.1) exists, even if the elements
(x, ) of the matrix U are unbounded when x & R". To do this, we will first determine the
upper bounds of the solutions, which are also of independent interest.

Let the matrix M (wt) be reduced to diagonal form, i.e. M (wt)= diag [m, (wf), ..., m, (w?)],

and 0 < m;” < my; (0t) < m*. For given n;we write system (2.1) in the form
Imi i + mi) +Fi 1y o o s Y ) =0, i=1,...,n (3.3)

Let us assume that for certain constants ¢; >0, p; >0 and ® > @," the following
inequalities hold:

n

lfi(\Pn---,‘Pmt)|<kzllcik|¢k|+Pilsmmtlr i=1,...,n (3.4)
Let w,?be the largest real eigenvalue of the matrix M_IC (M_ = diag (m,”, ..., m,"), and
C =\|leygll)y $;* () = A;*sin ot be the solution of the system
n
mo” + kZ ey + pisinot=0, i=1,...,n (3.5)
==1

Theorem 4. The estimate

[ (8) | < A;*sinet on (0, v/e), i=1,...,n (3.6)
holds when o > a,.

Proof. We set ¢ (8) = ecy; in (3.5). Since @, (8) = ew,, then with e [0, 1] the solu-
tion W;* (f, &) = A;* (€) sin ot exists. We shall show that A4;*(e) > 0. When e =0 this inequality
is satisfied. Let A4y*(g,) =0, A;*(e,) >0 for some ¢, =10, 1], but then ¢+ (¢, g,) =0 which
is impossible, since by virtue of the k~th equation of (3.5), we have m ™+ " (t, &,) < 0 on (0, /).

Let ¢ (t,e)(p(0,e)=% (o, e) =0,e =[0,1]) be the solution of the system

[my (o, &) (b, + i)l +ef; (. - P 8)=0, i=1,...,n (3.7)

where m; (0t, &) = m;” + ¢ (m; (o) — m;”). When € =0, the validity of the estimates is evident.
If they are not satisfied when & =1, then k, £, (0, /0] and e, &= (0, 1] can be found such
that I\ph (tlv 8*) I = ¢k+ (tl)v l\pk. (tlv e‘) | = l\ka (tt) Iy |\pi (ty 8,.,) I < ¢i+ (t) (1' = 1y ey Ny te IO, ﬂ/(l)])-
Since

my(ohe) >my g [fi (910 @ 0] < T cur () + prsinet in (0 7/0)

comparison of the k-th equation of (3.5) with (3.7) shows that [y (Z, g,) |<<¥"(f) on (0,

o), | P (0, eyl <tyxt (0), |4 (o), g, | < —*" (W/@). This contradiction proves the theorem.

_ We separate the region R ( R* in the neighbourhood % = 0. Let the inequalities (3.4)
and U (x (1), o) < U, be satisfied when y = Q. Since A;*(0)—~ 0 as w— oo, we have $* ()&
Q for fairly large w; consequently also (¢, &) = Q when e [0, 1]. Hence under the conditions
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@ > wy (), @ >> 0, (Q) the unique solution considered here exists in the region Q.

4. Let us investigate the effect of small dissipative forces on the stability of periodic
oscillations. <Consider the equation

= [ Moy S ]+ wF ey S +

V.(x, wf)
dt -

T 4] (da
where F(of) = F (ot 4+ 2n) is a n X n matrix that is symmetric and positive definite, and u
is a small positive parameter.

When assume that when p =0, (4.1) has the peridic solution x(f} of period T, and the
respective variational eguation (2.2) is highly stable (this occurs when any of the stability
conditions derived above is satisfied). Then (2.2) has no periodic sclutions that are of
pericd T, since an indefinite multiplier p = | would correspond to them. Hence by Poincar€'s
theorem /8/, (4.1) has, for small u, the unique solution x ({ p) such that x (i U) = x (f). The
respective variational equation has the form

Moty 2] + uF (o) 2" +— U (X (¢, p), otz =10 (%.2)

Let ;3 = iwig be an ri-multiple characteristic exponent of (2.2). The characteristic
exponents of (4.2), which become a;, when u =0, may be represented in the form

aih (M) = o + alik (P‘) e a?i’f (P-), ly == L., 7
where ank (n) are determined by the perturbation of the solution x(f) and, conseguently of

the coefficients of (2.2) and ay* (u) by the presence of the term uFz'. The first of these
factors does not disturb the Hamiltonian character of the system, hence the gquantities ay” ()

are imaginary. Let us obtain expressions for & {n).
The solutions
zi (1) = exp (@ppt) ui (), A =1,..., 1
correspond to the characteristic exponent @, .
We set y;. = 2y + Mz, = exp (%f) Vi (£) and normalize the Funections vy = uy o M (ug =
%iolt;x) by the condition

. 1 : .
((vipv ?iajviq)) = 7 {vip' Vigjviq) dt = 6pq (4-3)

L T

where 8, =0 when pskgq, §,, =1. We have y; =1 for the multiplier of the first kind and
yi = —1 for those of the second kind,.
Since simple elementary divisors correspond to a definite multiplier, the expansion of

@2 {(p) in powers of u has the form
;" wW=08m+0 (%Hq;’})
where under condition (4.3) the quantities P;; are eigenvalues of thematrix ¢ with elements
"Opqg = (BVip, ¥ild Vi), B = diag (0, —FM™Y

and the quantities ¢y are multiples of the respective values of By
Taking into account that |exp (7)) | =1, F' = F, we obtain

Opq = —((Fzip", viizig)) = ((Vilkip, F2ig)) = —{viizey, Fiig)) = Top

i.e. ¢ is a Hermitian matrix and its eigenvalues are therefore real. If B; are negative for
all i, the solution x (f, u),  when p is small, is asypptotically stable; however, if some [,
is positive, then «x (¢ p) is unstable.
In the case of a second-order scalar equation, the soclution is stable to a first approx-
imation, and becomes asymptotically stable, when subjected to small dissipative forces /9/.
Wwe shall explain under what conditions a similar statement holds for the vector equation (4.1).
Suppose that F = M (which physically means that the coefficients of dissipation are
proportional to the inertial coefficients). Then

Oy = —((Mz;)), Viizig)) = —Y3 ((¥ip, ViidVig)) = —Vabpq

Thus here all By = —Y, and, consequently, for small p the solution x(t, p) is asymptot-
igally stable.

Let us assume that all the characteristic exponents o, are simple, M and F are constant
matrices, and matrix U () is nearly constant {the latter occurs, for instance, in the case of
forced oscillations of weakly non-linear systems). Since the functions u;{¢) are also close
to constants, when F >0, vi0i = | 0 |, hence



457

B: = 0u = —((F (0 + iosouts), viiug)) = —| 00 | (Fuy, w)) <0
Thus, also, in this case x(f, p) is asymptotically stable when p is small.

5. As an example, let us consider the periodic oscillatory and rotary motions of a
system of two connected pendulums (Fig.l). Let the potential energy of the system be Ve =
Yeep?, where p=|2Rsinl,(z, + )| is the distance between the mounting points of the two
pendulums, and 1,1, are the angular coordinates of the pendulums. The equations of forced
oscillations of the system are

Lizi" + kisin z; + ksin (2,4 z,) + Fisinot =0, i =1, 2 (5.1)
Ly = mil®, ky = mygly, k= cR?

where m; are the masses and [; the lengths of pendulums, and g is
the acceleration due to gravity.
The variational equation of the system motion is

Mz 4+ U@®z=0 (5.2)

M = diag (Ly, Ly), U (&) = |usx (1) |
wyy = ugy = k cos (z; (t)Fx, (1)), uii= ki cos z; () + k cos (z; (1) + z, (1)

Obviously U (t) < U,, where U, is a matrix with elements wt =
Fig.4 ki + k, upt = ug* = k. Hence we can take as ;*? the eigenvalues of
g9- the matrix M-1U,, i.e. the roots of the equation

A(@) = (kg4 k — Liw?) (hy + k — Lyo?) — k2 =0

Note that the guantities % are equal to the frequencies of small natural oscillations
of the system. '

In conformity with the remark to Theorem 3 (5.1), when > w,* there is a unique periodic
solution of the form

Zi () = i+ njot + i (2), $i () = — P (=) =P (t+ 7T)

where (n; axre any given integers and zj;,=0 Or z; = n). When ny = ng =0, the motion of the
system is oscillatory and, when z;,=0, the oscillations of the respective pendulum occur
realtive to the lower equilibrium position and when =z;, = n they occur relative to the upper
equilibrium position. The over-all number of oscillating motions of this type is four.

First, we shall investigate the periodic oscillations of the system in the neighbourhood
of the equilibrium position (n = n, = ), = 15, = 0). The inequalities (3.4) will obviously be

satisfied, if we set C= U, p,=|F;|. Hence when > w,*, we have
|z; ()] < 4,* sinwton (0, njw) (5.3)
A =B (L2w? — ke — k) + pok L A= Py (L100® — by — k) L pok
(o) A (w)

Since the function —x(t-+ 7/2) also satisfies (5.1) and conditions (3.1), by virtue of the
uniqueness, x () =—x(t+ 7/2). In conformity with the remark to Theorem 2, the solution x (1)
is stable when «U>>0 and o> &*. In this system

(e, U (&) ¢) = ky cos 2y (t) ¢)® + kg €05 a5 () €2 + k cos (z, (8) + z, (8)) X ey + cg)?

Hence U @) > U, <U>>«U™, when A;*+ 4,*<n, where U-(f) is a matrix obtained from U (3
by replacing «z;(f) by their upper bounds (5.3). The conditions of positive definiteness «(U-»
have the form

Fido (AyY) + kJo (A + A1) >0 (5.4)
krkad o (Ar%) To (Ar%) + ko (ArF ++ Ar%) [kido (Ar*) + kol o (A:1)] >0
E1
Jo (A) =% S cos(Asint)dt
)
where Jg,(4) is a Bessel function of the first kind.

Thus when 4,*+ 4;* <=, under conditions (5.4) the sclution «x(f) is stable to a first
approximation. Using (5.3) it is possible to determine o, at which these inequalities begin
to be satisfied.

The estimates (5.3) and consequently, the gonditions of stability (5.4) obviously hold
for any perturbing forces F;(t) of the form

Fi()= —Fi (=)= —F; (t+ T/2), |Fi(@#)|< pi|sin ot|

Let us now investigate the solution of the form (3.1), when nr; = —1,n, = 1 that defines
the rotation of pendulums in one and the same direction at the average angular velocity a.
Let us assume that
Ry==Fy —mgly >0, Ry = Fy+ magly, <0
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and, first, consider the disconnected pendulums (c=0).

Since sin (¢, — wt) = —sin ot + 0 (1), Where —1<0 () <1, setting ¢ = myg} and using Theorem
4, we obtain |4, ()| < Ry [Ly0* — k]"'sin ot on (0, n/w) when 2> g/l,. We shall show that v, () >0 on
(0, m/w). We set O(e) = eB(); when e=0 the inequality indicated is satisfied and ¥y (0 >,

Py (/w) < 0. If it is violated when & increases on (0,1], then ; (f, &) =¥ (4, &) = 0, 1 (£, €,) > 0
on [0, /0] for some t [0, Wo] and e, e (0,1, But by virtue of the respective equation we have
Yy (¢ e,) <0 in the neighbourhood of . This contradiction proves that v, (>0 on (0, w/o).

If 4, (<2 on (0, ve), then taking 1w, (>0 into account, we have

Iz (1< 12 (W0 — 0], cosz (6 >]cosz (Wo — 1|

Consequently the mean value of cosz (#) on (0, n/®) is positive. Thus in conformity with
Theorem 2 and motion considered here is stable, if

Ry 14 g \Ms
Tk S “’>2(T>

The rotationmay then be very irregular, it is even possible that =z, (0)>0, i.e. in some
interval the pendulum rotation is reversed (note that the usual tests of rotation stability
of the pendulum are inapplicable to such modes /11, 12/). The motion of the second pendulum
is obviously stable, when

|Bel & g\
FeE<T o>2(F)

Now let ¢= 0. To obtain the upper bounds of |%;(f)| it is obviously necessary to replace
pi by |R;i| in (5.3). Let us assume that beginning with some «,> 2w,* the inequalities

At < 2, At a2, Ri>cR*A%, R, < — cRMA*
are satisfied.

We shall show that the respective solution is stable. By virtue of the first of equations
(5.1), the inequality v, () >0 is not violated on (0, /o) for some ¢, ¢, since

R, sin @t + ¢, R?sin (§; + ;) > (R — ¢, R%M,*) sin 0wt >0 on (0, n/w)

From the second of equations (5.1) we similarly find that ¥, () <0 on (0,n/e). As the
result, the mean value of cosz (f), cos z, (t), cos (z, () + z, (#)) and, consequently, that of the matrix
U on [0, n/w] is positive, which, using Theorem 2, proves the stability of the solution
considered.
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